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Abstract. We have calculated the electroweak O(α) corrections to the processes pp→ Zγ+X → νlν̄lγ
+X, pp→ Zγ+X → ll̄γ+X, and pp→Wγ+X→ νl l̄γ+X at the LHC, with l = e, µ and νl = νe, νµ, ντ .
The virtual corrections are evaluated in leading-pole approximation, whereas the real corrections are taken
into account exactly. These corrections are implemented into a Monte Carlo generator which includes both
phase-space slicing and subtraction to deal with soft and collinear singularities. We present numerical results
for total cross sections as well as for experimentally interesting distributions. Applying typical LHC cuts, the
electroweak corrections are of the order of −5% for the total cross sections and exceed −20% for observables
dominated by high center-of-mass energies of the partonic processes.

1 Introduction

One of the primary goals of future colliders is to look for
effects of theories beyond the standard model (SM). In
general, there are two possibilities for new physics. Either
the novel phenomena manifest themselves at energy scales
probed directly at forthcoming experiments or at much
larger scales. In the first case one could admire a spectacu-
lar scenario, characterized by the appearance of many new
particles or resonances. In the latter case, the situation ap-
pears less favorable, but new-physics effects could still be
detected in an indirect way. They can, for instance, influ-
ence physical observables at low energy by modifying the
structure of the gauge-boson self-interactions. Such modi-
fications can be parametrized in terms of anomalous cou-
plings in the Yang–Mills vertices. While the gauge-boson
couplings to the fermions have been measured at LEP2 and
Tevatron to an accuracy of 0.1%–1% [1], triple and quar-
tic gauge-boson couplings have been determined to much
lower accuracy [1, 2]. Hence, the possibility of the existence
of anomalous couplings in the electroweak gauge sector
cannot be ruled out yet.
Vector-boson pair-production processes turn out to be

especially suited for testing the non-Abelian structure of
the SM. In the last decade, their potential has been ex-
tensively exploited at LEP2 and Tevatron. For these pro-
cesses, the effect of anomalous couplings is expected to
rise strongly with increasing invariant mass of the gauge-
boson pair, since non-standard terms lead in general to
unitarity violation for longitudinal gauge bosons. At future
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colliders, it will thus be worthwhile to analyze the large di-
boson invariant-mass region. Another interesting property
of the vector-boson pair-production processes is the so-
called radiation zero, which characterizes the SM partonic
amplitudes of Wγ and WZ production. Owing to gauge
cancellations, for a given value of the scattering angle in
the di-boson rest frame, the amplitude forWγ production
vanishes exactly and the one for WZ approximately. For
hadronic processes, the resulting effect is the appearance of
a dip in the angular distributions (see e.g. [3] and references
therein). Any deviation from the SM gauge structure tends
to modify this peculiar signature, thus providing a clean
possibility to look for new physics. Present experiments are
not sensitive enough to see the dip [4, 5], but the LHC offers
the possibility to observe it for the first time.
Finally, the production of vector-boson pairs consti-

tutes an important background in the search for new par-
ticles. For example, γZ production with the Z-boson de-
caying into a pair of neutrinos gives rise to a photon-
plus-missing-energy signature. The same signal is expected
for processes where the photon is produced in associa-
tion with one or more heavy particles which escape the
detector, either because they are weakly interacting or be-
cause they dissociate into invisible decay products. Many
extensions of the SM predict the existence of such pro-
cesses. For example, the ADDmodel [6] and relatedmodels
[7, 8], where gravity becomes strong at TeV energies, pre-
dict the possibility to observe the production of a photon
along with a graviton. Higher-dimensional gravitons ap-
pear as massive spin-2 neutral particles, which cannot be
directly observed in a detector. Hence, graviton radiation
leads to a missing-energy signature where a photon is pro-
duced with no observable particle balancing its transverse
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momentum. Independently of the considered new-physics
model, the production of such heavy invisible particles can
be inferred from the missing transverse energy distribu-
tion, which would exhibit an excess of events at high values
as compared to the SM. Existing experimental searches for
such an effect are, for instance, presented in [9, 10].
Owing to their limited energy and luminosity, LEP2

and Tevatron only provide weak constraints on anomalous
couplings and production rates for new particles [1, 11–13].
At the LHC, the experimental collaborations will col-

lect hundred thousands of events coming from vector-
boson pair production [14]. To match the precision of the
LHC experiments, the cross sections for vector-boson pair-
production processes have to be calculated beyond leading
order. The next-to-leading-order (NLO) QCD corrections
for on-shell W and Z bosons were calculated in [15, 16]
and extended to include leptonic decays in the narrow-
width approximation and anomalous couplings in [17–19].
After the full NLO amplitudes including leptonic decays
had become available [20], Monte Carlo programs incor-
porating these amplitudes have been presented for Wγ
and Zγ production in [21] and for WW , WZ, and ZZ
production in [22, 23]. As a general feature, the QCD cor-
rections modify the leading-order di-boson cross sections
at the LHC by a positive amount of several tens of per-
cent, and have thus a considerable impact on the measure-
ment of gauge-boson couplings. At this point, the question
arises if the electroweak corrections to vector-boson pair-
production processes at the LHC lead to similarly sizable
effects. In the above-mentioned calculations typically only
universal electroweak corrections were taken into account
such as the running of α or corrections associated with the
ρ-parameter. This approach was based on the idea that
non-universal electroweak corrections only contribute sig-
nificantly in the high-energy domain, where the statistics
at the LHC will be too low to extract any physics from the
experimental data.
However, this is in general not the case in the high-

energy region, which is of considerable experimental inter-
est since, as discussed above, the effects of the anomalous
couplings and the effects of the production of so far un-
known heavy particles are most pronounced there. In fact,
at high energies the electroweak corrections are enhanced
by so-called electroweak Sudakov logarithms, i.e. double
logarithms of the process energy over the vector-boson
mass [24–28]. They can reach several tens of percent and
have to be taken into account to make sure that an ex-
perimentally observed deviation from the QCD-corrected
SM predictions due to electroweak effects is not misinter-
preted as a signal for physics beyond the SM. The impor-
tance of the electroweak corrections to gauge-boson pair-
production processes at the LHC has been confirmed by
several calculations [29–31], which all point to a negative
contribution of some ten percent, which well exceeds the
statistical errors.Whereas the logarithmic electroweak cor-
rections to WW , WZ, ZZ production in the high-energy
limit have been calculated including the corrections to the
decay process as well as the complete real corrections [31],
for Wγ production only the logarithmic electroweak cor-
rections to the production subprocess are available [29].

The electroweak corrections to Zγ production have so far
only been determined for an on-shell Z boson, i.e. with-
out taking into account decay effects [30]. Furthermore, the
real corrections for the latter two processes have been in-
cluded only in the soft and collinear limits or not at all. The
goal of our work is therefore the calculation of the virtual
and real electroweak corrections to the cross sections and
distributions for the purely leptonic channels pp→ V γ+
X → l1 l̄2γ+X, where V =W,Z. Final states containing
quarks are not discussed in this work.
This paper is organized as follows: The strategy of our

calculation is described in Sect. 2. In Sect. 3 we give the
setup for the numerical evaluation. Numerical results are
presented in Sect. 4, and Sect. 5 contains our summary.
Finally, some explicit analytical results are listed in the ap-
pendices.

2 Strategy of the calculation

We consider the production of a photon along with a mas-
sive gauge boson in proton–proton collisions, where the
gauge boson decays leptonically. The generic process reads

p+p→ V +γ+X→ l3+ l̄4+γ+X , (1)

where p denotes the incoming protons, V indicates a W
or Z boson, γ the outgoing photon, l3 the outgoing lep-
ton, l̄4 the outgoing antilepton, andX the remnants of the
protons.
In the parton model, the corresponding cross section

is obtained as a convolution of the distributions Φq1|p and
Φq̄2|p of the partons q1 and q̄2 in the incoming protons with
the partonic cross sections σq1 q̄2 , averaged over spins and
colors of the partons,

σpp(S) =
∑

q1,q2

∫ 1

0

dx1

∫ 1

0

dx2 Φq1|p(x1)Φq̄2|p(x2)σq1 q̄2(ŝ) .

(2)

The sum
∑
q1,q2

runs over all partonic initial states which

are allowed by charge conservation. In practice we include
the quarks and antiquarks qi = u, ū, d, d̄, s, s̄, c, c̄. The in-
tegration variables xi, i= 1, 2 correspond to the partonic
energy fractions. Moreover, the quantities S and ŝ= x1x2S
are the squared CM energies of the hadronic process and
the partonic subprocesses, respectively.
For the partonic processes we adopt the generic nota-

tion

q1(p1, σ1)+ q̄2(p2, σ2)→ V (p3+p4)+γ(p5, λ5)

→ l3(p3, σ3)+ l̄4(p4, σ4)+γ(p5, λ5) , (3)

where the arguments label the momenta and helicities σi =
±1/2, i= 1, . . . , 4 and λ5 =±1 of the corresponding par-
ticles. In the following, the masses of the external fermions
are denoted by mi, i = 1, . . . , 4. Since we treat all exter-
nal fermions as massless these appear only as regulators of
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mass singularities. The charges of the fermions are denoted
by Qi, those of the antifermions by −Qi.
The lowest-order partonic cross sections are calculated

using the complete matrix elements for the process

q1(p1, σ1)+ q̄2(p2, σ2)→ l3(p3, σ3)+ l̄4(p4, σ4)+γ(p5, λ5) .
(4)

This means that we include the full set of Feynman di-
agrams, in this way accounting for all irreducible back-
ground coming from non-resonant contributions. Analytic
results are given in AppendixA.1.
The electroweak radiative corrections to (4) consist of

virtual corrections, resulting from loop diagrams, as well as
of real corrections, originating from the process

q1(p1, σ1)+ q̄2(p2, σ2)→ l3(p3, σ3)+ l̄4(p4, σ4)

+γ(p5, λ5)+γ(p6, λ6), (5)

with an additional photon with momentum p6 and helic-
ity λ6 =±1. Virtual and real corrections have to be com-
bined properly in order to ensure the cancellations of soft
and collinear singularities (cf. Sect. 2.2). The helicity ma-
trix elements for the process (5) are listed in AppendixA.3.
For the calculation of the radiative corrections we fol-
low the approach used for the process e+e−→W+W−→
4f in [32]: The virtual corrections are calculated in the
leading-pole approximation (LPA), i.e. we take only those
terms into account that are enhanced by a resonant mas-
sive gauge-boson propagator (cf. Sect. 2.3), whereas the
real corrections are calculated from the full matrix elem-
ents for the processes (5).

2.1 Absorption of initial-state mass singularities
in parton distribution functions

At next-to-leading order in electroweak perturbation the-
ory, the partonic cross sections generally contain universal,
initial-state collinear singularities. The latter can be ab-
sorbed in the parton distribution functions (PDFs). To this
end, one has to fix a factorization scheme, and we choose
the MS scheme, which defines the connection between the
lowest-order PDFs in (2) and the experimentally deter-
mined PDFs as [33, 34]

Φqi|p(xi) = Φ
MS

qi|p
(xi, Q

2)−
α

2π
Q2i

∫ 1

xi

dz

z
Φ
MS

qi|p

(xi
z
,Q2
)

×

[
1+ z2

1− z

(
ln

(
Q2

m2i

)
−2 ln(1− z)−1

)]

+

.

(6)

Here, we used the (+)-prescription

∫ 1

a

dx [f(x)]+ g(x) =

∫ 1

a

dxf(x)[g(x)− g(1)]

− g(1)

∫ a

0

dxf(x) , (7)

and the quantity Q denotes the electromagnetic factoriza-
tion scale, which should be set equal to the typical energy

scale of the considered process. Inserting the MS definition
(6) into the hadronic cross section (2) allows one to write
the latter as a convolution of the experimentally defined
PDFs with the subtracted partonic cross section

σpp(S,Q
2) =

∑

q1,q2

∫ 1

0

dx1

∫ 1

0

dx2 Φ
MS

q1|p
(x1, Q

2)

×Φ
MS

q̄2|p
(x2, Q

2)σMSq1 q̄2(ŝ, Q
2) , (8)

where

σMSq1q̄2(ŝ, Q
2) = σq1 q̄2(ŝ)−σ

MS
q1q̄2,sing

(ŝ, Q2)+O(α2) (9)

and

σMSq1 q̄2,sing(ŝ, Q
2) =

α

4πŝ

∑

i=1,2

Q2i

∫ 1

0

dz

∫
dΦi(z)

∣∣∣M(0)
q1q̄2
(Φi(z))

∣∣∣
2

×
1

z

[
1+ z2

1− z

(
ln

(
Q2

m2i

)
−2 ln(1− z)−1

)]

+

.

(10)

HereM(0)
q1q̄2
denotes the lowest-order matrix element, and

Φi(z) represents the partonic phase-space where the in-
coming particle i has momentum zpi. After the subtrac-
tion, the resulting cross section is free from collinear and
soft singularities.
A fully consistent inclusion of the electroweak correc-

tions into the calculation of the hadronic cross sections re-
quires the use of PDFs in which both photonic initial states
and QED O(α) corrections are taken into account. A first
global analysis of parton distributions incorporating QED
contributions has been performed recently in [35]. It turns
out that the photonPDFs are quite small [35], and theQED
corrections change the PDFs of the quarks by less than
1%[36, 37].Theseeffectsarebelowthe typicaluncertaintyof
hadronic processes and below the envisaged accuracy of our
analysis. Accordingly, we restrict our calculation to initial
states containing quarks and use onlyQCD-correctedPDFs
in (8). We nevertheless investigated the dependence of our
results on the electromagnetic factorization scaleQ entering
in (10), keeping the QCD factorization scale Q that enters

Φ
MS

qi|p
(xi, Q

2) in (8) fixed. For γZ production, a variation of

Qbya factor 10 resulted in a change of the total cross section
by less than 0.3%, of the γZ invariant-mass distribution at
large invariantmassby less than0.5%,andof the transverse-
momentum distribution of the photon at large transverse
momenta by less than 1%.

2.2 Treatment of soft and collinear photon emission

In first-order electroweak perturbation theory, the sub-
tracted partonic cross section receives contributions from
the lowest order, the virtual corrections, the real correc-
tions, as well as from the term (10) arising from the factor-
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ization of the initial-state collinear singularities:

σMSq1q̄2(ŝ, Q
2) = σ

(0)
q1 q̄2
(ŝ)+σvirtq1q̄2(ŝ)

+σrealq1q̄2
(ŝ)−σMSq1q̄2 ,sing(ŝ, Q

2) . (11)

In general, virtual and real corrections contain soft as well
as collinear singularities, which we regularize by introduc-
ing an infinitesimal photon mass mγ as well as small mass
parameters mi for the external fermions. These logarith-
mic singularities cancel when adding real and virtual cor-
rections, except for the collinear logarithms arising from
the initial state, which are absorbed in the PDFs as de-
scribed in Sect. 2.1. Thus, all soft and collinear singularities
cancel in (11), leaving the subtracted cross section free of
any mass regulators.
However, this cancellation requires a careful treatment

of soft and collinear singularities. In our work, we adopt
the approach to divide the virtual and real corrections into
finite and singular parts, and to cancel the dependence
on the mass regulators by adding the singular parts ana-
lytically. To extract the singular parts from the real cor-
rections, we employ two independent methods, the phase-
space-slicing technique and the dipole subtraction method.
In the following we give explicit expressions for our treat-
ment of infrared, i.e. soft and collinear, singularities.

2.2.1 Finite virtual corrections

First, we define the finite virtual corrections by

σvirtq1 q̄2,finite(ŝ) =

1

2ŝ

∫
dΦ0×

(
2Re

[
M
(0)
q1q̄2
(Φ0)

(
δMvirt

q1q̄2
(Φ0)
)�]

−2Re
[
M(0)
q1q̄2
(Φ0)

(
δMvirt

q1q̄2,sing
(Φ0)
)� ])

, (12)

where M(0)
q1q̄2
and δMvirt

q1q̄2
denote the matrix elements of

the Born process and the corresponding electroweak vir-
tual corrections, respectively, whereas Φ0 is the phase-
space for the Born process (4). The subtracted singular
parts are given by [32, 38]

2Re
[
M(0)
q1q̄2
(Φ0)

(
δMvirt

q1q̄2,sing
(Φ0)
)�]
=

α

2π

n∑

i,j=1
i�=j

τiτjQiQj

∣∣∣M(0)
q1q̄2
(Φ0)
∣∣∣
2

(L(sij ,m
2
i )+Cij) ,

(13)

where n is the number of external particles of the lowest-
order process, sij = (pi+pj)

2, and τi = 1 for incoming par-
ticles and outgoing antiparticles, whereas τi =−1 for out-
going particles and incoming antiparticles. The singulari-
ties are contained in

L(sij ,m
2
i ) = ln

(
mγ
2

sij

)(
1+ ln

(
m2i
sij

))

−
1

2
ln2
(
m2i
sij

)
+
1

2
ln

(
m2i
sij

)
, (14)

while the finite parts Cij are added for later convenience
and distinguish between incoming, i, j = 1, 2, and outgoing

particles, i, j > 2,

Cij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−π
2

3 +
3
2 , i, j > 2, i �= j ,

π2

6 −1, i= 1, 2, j > 2 ,

−π
2

2 +
3
2 , i > 2, j = 1, 2 ,

−π
2

3 +2, i= 1, 2, j = 1, 2, i �= j .

(15)

2.2.2 Phase-space slicing

In short, the idea of the phase-space-slicing technique is to
define the finite real corrections by restricting the phase-
space integration to the region where the squared ampli-
tude of the bremsstrahlung process is finite. To this end,
a technical cut δs on the energy E of the bremsstrahlung
particle is introduced, as well as a technical cut δc on the
angles ϑi of the bremsstrahlung particles with respect to
all potential emitters. The finite real corrections are then
given by

σreal,sliq1q̄2,finite
(ŝ) =

1

2ŝ

∫

E>δs
√
ŝ/2

cos ϑi<1−δc

dΦreal
∣∣Mreal

q1q̄2
(Φreal)

∣∣2 ,

(16)

where Φreal andMreal denote the phase space and the ma-
trix element of the bremsstrahlung process (5).
In the remaining singular parts of the real corrections,

the momentum of the bremsstrahlung particle is integrated
out, up to a remaining convolution over the momentum
fraction z of the initial-state particle after bremsstrahlung
emission. Here the soft and collinear singularities are again
regularized by an infinitesimal photon mass mγ and by
small mass parameters mi for the external fermions. The
resulting expressions [32, 33] can be divided into a part
arising from initial-state radiation and a part arising from
final-state radiation. Adding them to the term (10) orig-
inating from the MS definition of the PDFs and to the
singular parts (12) of the virtual corrections, all infrared
singularities cancel and one obtains a finite contribution

σvirt+real, sliq1 q̄2, sing
(ŝ, Q2)

= σvirtq1q̄2, sing(ŝ)+σ
real, sli
q1q̄2, sing

(ŝ)−σMSq1q̄2, sing(ŝ, Q
2)

=
1

2ŝ

∫
dΦ0

(∣∣∣Mv+r, init
q1q̄2, sing

(Φ0)
∣∣∣
2

+
∣∣∣Mv+r,final

q1q̄2, sing
(Φ0)
∣∣∣
2
)

+
1

2ŝ

2∑

i=1

∫
dz

z

∫
dΦi(z)

∣∣∣Mv+r, init,z
q1q̄2, sing

(Φi(z))
∣∣∣
2

, (17)

where

∣∣∣Mv+r, init
q1q̄2, sing

(Φ0)
∣∣∣
2

=
α

2π

2∑

i=1

n∑

j=1
j �=i

QiτiQjτj

×
∣∣∣M(0)

q1q̄2
(Φ0)
∣∣∣
2
[
π2

3
−2+Cij+Li2

(
1−
4EiEj
sij

)

+ln

(
ŝ

sij

δc

2

)(
3

2
+ ln δ2s

)
+
1

2
ln2
(
ŝ

sij

)]
, (18)
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∣∣∣Mv+r,final
q1q̄2, sing

(Φ0)
∣∣∣
2

=
α

2π

n∑

i=3

n∑

j=1
j �=i

QiτiQjτj

∣∣∣M(0)
q1q̄2
(Φ0)
∣∣∣
2

×

[
π2−

9

2
+Cij+Li2

(
1−
4EiEj
sij

)
+ln

(
4E2i
sij

δc

2

)

×

(
3

2
+ ln

(
δ2sŝ

4E2i

))
+
1

2
ln2
(
4E2i
sij

)]
, (19)

∣∣∣Mv+r,init,z
q1q̄2,sing

(Φi(z))
∣∣∣
2

=−
α

2π

n∑

j=1
j �=i

QiτiQjτj

∣∣∣M(0)
q1q̄2
(Φi(z))

∣∣∣
2

×

[
1+ z2

1− z

(
ln

(
ŝ

Q2
δc

2

)
+2 ln(1− z)

)
+1− z

]

+

,

(20)

Li2 denotes the dilogarithm

Li2(z) =−

∫ z

0

dt

t
ln(1− t), |arc(1− z)|< π , (21)

and Φi(z) represents the phase space where the incoming
particle i has momentum zpi.

2.2.3 Dipole subtraction method

In the dipole subtraction method, the finite real correc-
tions are constructed by subtracting an auxiliary function
from the squared bremsstrahlung amplitude before inte-
grating over phase space,

σreal,subq1q̄2,finite
(ŝ) =

1

2ŝ

∫
dΦreal

(
∣∣Mreal

q1q̄2
(Φreal)

∣∣2−
∣∣Msub

q1q̄2
(Φreal)

∣∣2
)
.

(22)

The subtracted terms are added again after partial an-
alytic integration over the bremsstrahlung momentum.
The subtraction function has to be chosen such that it
cancels all soft and collinear singularities of the original
integrand, so that the difference (22) can be integrated
numerically without regulators for these singularities.
Moreover, it has to be simple enough so that it can be
integrated analytically over the singular regions of phase
space. We use the process-independent dipole subtrac-
tion formalism, which was introduced for massless QCD
in [39–41] and generalized to massive fermions in [38]. We
follow the approach of [38] in the limit of small fermion
masses.
In the dipole subtraction formalism the subtraction

function is constructed from contributions that are la-
belled by ordered pairs ij of charged fermions, so-called
dipoles. The fermions i and j are called emitter and specta-
tor, respectively. In the formulation of [38] the subtraction

function reads

∣∣Msub
q1q̄2
(Φreal)

∣∣2 =

−4πα
6∑

nb=5

n∑

i,j=1
i�=j

τiτjQiQjg
sub
ij (pi, pj , pnb)

∣∣∣M(0)
q1q̄2
(Φ̃
nb
0,ij)
∣∣∣
2

.

(23)

The sum over nb = 5, 6 accounts for the fact that the pho-
ton appears twice in the final state of the bremsstrahlung
process (5), such that a separate subtraction term has to be
introduced for each final-state photon. Note that one of the
two final-state photons has always to be visible in the de-
tector and thus does not give rise to singularities. In what
follows, we suppress the dependence of the phase space on
nb and denote the bremsstrahlung momentum by k = pnb .
The phase spaces Φ̃

nb
0,ij in (23) are given by embedding pre-

scriptions of the phase space Φreal of the bremsstrahlung
process in the phase space Φ0 of the Born process. Both
the embedding prescription Φ̃

nb
0,ij and the subtraction func-

tions gsubij depend on the emitter i and spectator j being
incoming or outgoing. One therefore encounters four kine-
matically different cases for the subtraction functions gsubij :

gsubij (pi, pj , k) =⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
(pik)(1−yij)

[
2

1−zij(1−yij)
−1− zij

]
, i, j > 2 ,

1
(pik)xij

[
2

2−xij−zij
−1− zij

]
, i > 2, j = 1, 2 ,

1
(pik)xji

[
2

2−xji−zji
−1−xji

]
, i= 1, 2, j > 2 ,

1
(pik)vij

[
2

1−vij
−1− vij

]
, i= 1, 2, j = 1, 2 ,

(24)

where

xij =
pipj+pjk−pik

pipj+pjk
, yij =

pik

pipj+pik+pjk
,

zij =
pipj

pipj+pjk
, vij =

pipj−pik−pjk

pipj
. (25)

Denoting the number of external particles by n, one has
for the embedding prescription, if both the emitter and the
spectator are part of the final state,

p̃µi = p
µ
i +k

µ−
yij

1−yij
pµj , p̃

µ
j =

1

1−yij
pµj , p̃

µ
l = p

µ
l ,

i, j > 2 , i �= j , l = 1 , . . . , n , l �= i, j , (26)

whereas for an initial-state emitter and a final-state spec-
tator one gets

p̃µi = xjip
µ
i , p̃

µ
j = p

µ
j +k

µ− (1−xji)p
µ
i , p̃

µ
l = p

µ
l ,

i= 1, 2 , j > 2 , l = 1, . . . , n , l �= i, j . (27)

The embedding prescription for a final-state emitter and
an initial-state spectator can be obtained from (27) by
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exchanging i↔ j everywhere. Finally, in case of an initial-
state emitter and an initial-state spectator the embedding
prescription is given by

p̃µi = vijpi , p̃j = pj , p̃
µ
l = Λ

µ
νp
ν
l , i, j = 1, 2 ,

i �= j , l = 3, . . . , n, (28)

with the boost matrix

Λµν = g
µ
ν−
(Pij+ P̃ij)

µ(Pij+ P̃ij)ν

P 2ij+PijP̃ij
+
2P̃µijPij,ν

P 2ij
. (29)

Here, P̃ij represents the total initial-state momentum after
the projection, P̃µij = p̃

µ
i + p̃

µ
j , and

Pij = p1+p2−k =
n∑

k=3

pk. (30)

The subtracted contribution can be integrated over the
(singular) photonic degrees of freedom up to a remaining
convolution over a variable z. In this integration the regu-
lators mγ and mi must be retained, and soft and collinear
singularities appear as logarithms in these mass regulators.
The resulting expressions [32, 38] can again be divided into
a part arising from initial-state radiation and a part arising
from final-state radiation. Adding them to the term (10)
originating from the MS definition of the PDFs and to the
singular parts (12) of the virtual corrections, the infrared
singularities cancel and one finds

σvirt+real, subq1q̄2, sing
(ŝ, Q2)

= σvirtq1 q̄2, sing(ŝ)+σ
real, sub
q1q̄2, sing

(ŝ)−σMSq1q̄2, sing(ŝ, Q
2)

=
1

2ŝ

2∑

i=1

∫
dz

z

∫
dΦi(z)

×

(∣∣∣Mv+r, init,z
q1q̄2,sing

(Φi(z))
∣∣∣
2

+
∣∣∣Mv+r,final,z

q1q̄2,sing
(Φi(z))

∣∣∣
2
)
,

(31)

where
∣∣∣Mv+r,init,z

q1q̄2,sing
(Φi(z))

∣∣∣
2

=

−
α

2π

2∑

j=1
j �=i

QiτiQjτj

∣∣∣M(0)
q1q̄2
(Φi(z))

∣∣∣
2

×

[
1+ z2

1− z

(
ln

(
ŝ

Q2

)
+2 ln(1− z)

)
+1− z

]

+

−
α

2π

×
n∑

j=3

QiτiQjτj

∣∣∣M(0)
q1q̄2
(Φi(z))

∣∣∣
2
{[
1+ z2

1− z

]

+

ln

(
|s̃ij |

Q2

)

+

[
1+ z2

1− z
(2 ln(1− z)− ln(z))+1− z

−
2

1− z
ln(2− z)+ (1+ z) ln(1− z)

]

+

}
, (32)

∣∣∣Mv+r,final,z
q1q̄2,sing

(Φi(z))
∣∣∣
2

=

α

2π
Qiτi(τ1Q1+ τ2Q2)

∣∣∣M(0)
q1q̄2
(Φi(z))

∣∣∣
2

×

[
1

1− z

(
2 ln

(
2− z

1− z

)
−
3

2

)]

+

, (33)

and s̃ij = (p̃i+ p̃j)
2 is determined from the momenta of the

phase space Φi(z), i.e. s̃ij = (zpi+ pj)
2 = zsij. Note that

the finite part (15) of the singular virtual corrections (13)
has been chosen to exactly cancel the end-point parts re-
sulting from the subtraction function (23) such that only
z-dependent contributions remain in (32) and (33).

2.2.4 Master formula

Altogether, in our approach the subtracted partonic cross
section, which is free of soft and collinear singularities, can
be written as a sum of four different parts,

σMSq1 q̄2(ŝ, Q
2) = σ

(0)
q1q̄2
(ŝ)+σvirtq1q̄2,finite(ŝ)

+σrealq1q̄2,finite
(ŝ)+σvirt+realq1q̄2,sing

(ŝ, Q2) ,

(34)

where the finite virtual corrections in the second term of
the right-hand side are defined by (12). The last two terms
are given by (16) and (17), respectively, if using the phase-
space-slicing technique and by (22) and (31), respectively,
in case of using the subtraction method.

2.3 Treatment of finite-width effects

The processes (3) involve the production and decay of
an unstable particle V =W,Z. The corresponding prop-
agator leads to a pole in the amplitude, which has to be
regularized by incorporating the finite width of the mas-
sive vector bosons. Several methods to include finite-width
effects in a perturbative calculation have been discussed
in the literature [42–54].1 The simplest approach is given
by the fixed-width scheme, which corresponds to replac-
ing the resonant propagator by one containing a constant
finite width. Since the finite-width results from resumma-
tion of an incomplete set of higher-order contributions,
its introduction potentially violates gauge invariance. For
Born amplitudes, the effects of this violation have been
shown to be numerically small in the fixed-width scheme
(see e.g. [46, 48, 55, 56]) by comparing the results to those
obtained with other manifestly gauge-invariant prescrip-
tions, as e.g. the complex-mass scheme [48].
In our calculation, following the approach of [32], we

adopt the fixed-width scheme to evaluate the Born cross
section and the real corrections. For the virtual corrections,
on the other hand, we use the LPA [32, 43, 47]. In this ap-
proximation only the leading term in an expansion about

1 The problem of finite-width effects and gauge invariance in
Wγ production has been first addressed in [45].
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the resonance pole, i.e. the residue divided by the reso-
nant propagator, is kept. Since the residue, which is related
to physical amplitudes for on-shell production and decay,
and the resonant propagator are gauge invariant, the LPA
yields a gauge-invariant result. As all non-resonant con-
tributions are neglected, the number of contributing di-
agrams is considerably reduced, and only loop integrals
with up to four propagators appear. The error induced by
using the LPA for the virtual corrections can be estimated
to be of the order αΓV /MV , where MV and ΓV are the
mass and the width of the vector boson V , respectively, and
thus of the order of a few permille. This estimate was con-
firmed for single W production at hadron colliders in [34]
and for WW production in electron positron annihilation
in [57, 58]. Thus, the LPA should be more than sufficient
for the considered process, as long as the resonant dia-
grams dominate.
Following the approach presented in [32], the virtual

corrections evaluated in LPA can be further split into fac-
torizable and non-factorizable parts, such that the finite
virtual corrections can be written as

σvirt,LPAq1 q̄2,finite
(ŝ) =

1

2ŝ

∫
dΦ0 2Re

[
M
(0),LPA
q1q̄2

(Φ0, Φ
osh
0 )
(
δMvirt,LPA

q1q̄2, fac
(Φ0, Φ

osh
0 )

+ δMvirt,LPA
q1q̄2,nfac

(Φ0, Φ
osh
0 )− δM

virt,LPA
q1q̄2,sing

(Φ0, Φ
osh
0 )
)�]
. (35)

In (35),M(0),LPA
q1q̄2

(Φ0, Φ
osh
0 ) denotes the Born matrix elem-

ent in LPA,

M
(0),LPA
q1q̄2

(Φ0, Φ
osh
0 ) =

R(0)(Φosh0 )

(p3+p4)2−M2V +iMV ΓV
, (36)

which receives contributions from all Born diagrams con-
taining the resonant propagator. The residue R of the
amplitude at the pole is evaluated using a phase space
Φosh0 = {poshi , i = 1, . . . , 5} projected on the mass-shell of
the decaying particle, i.e. (posh3 + p

osh
4 )

2 =M2V . We spec-
ify our choice for the on-shell projection in AppendixB.
The factorizable virtual corrections in (35) get contribu-
tions from all diagrams where the resonant propagator
appears outside the loop, i.e. from diagrams that factor-
ize into a production part, a decay part, and the resonant
propagator. In LPA, they can be written as

δMvirt,LPA
q1q̄2,fac

(Φ0, Φ
osh
0 ) =

Rvirtfac (Φ
osh
0 ,mγ)

(p3+p4)2−M2V +iMV ΓV
,

(37)

where all soft singularities are regularized by the infinitesi-
mal photon mass parametermγ .
The non-factorizable virtual corrections receive contri-

butions from all diagramswhere amassless virtual particle,
in our case a photon, connects the production and decay
subprocesses or one of these subprocesses to the reson-
ance. The infrared singularities originating from photon
emission off the unstable boson V are here regularized by
keeping the resonant momentum off-shell wherever the on-
shell limit leads to a singularity. The contribution of the

diagrams where the photon couples to the resonance are
already partly contained in the factorizable virtual cor-
rections as defined above, such that this contribution has
to be subtracted from the non-factorizable corrections to
avoid double counting [32]. As an advantage, the non-
factorizable virtual corrections can be evaluated in the
extended soft photon approximation (ESPA), which cor-
responds to setting the loop momentum to zero wherever
this does not lead to a resonance. The non-factorizable
corrections

δMvirt,LPA
q1q̄2,nfac

(
Φ0, Φ

osh
0

)
=

Rvirt,ESPAnfac

(
Φosh0 , (p3+p4)

2−M2V
)

(p3+p4)
2−M2V +iMV ΓV

=
1

2
M(0),LPA
q1q̄2

(
Φ0, Φ

osh
0

)

× δvirtnfac
(
Φosh0 , (p3+p4)

2−M2V
)

(38)

are then proportional to the Born matrix element in LPA.
We give the analytical expression for the correction factor
δvirtnfac in AppendixA.2.

Note that in order not to spoil the cancellation of soft
and collinear singularities between the virtual corrections
in LPA and the real corrections evaluated exactly, we con-
sistently subtract in (35) the singular virtual corrections
evaluated in LPA:

2Re
[
M(0),LPA
q1q̄2

(
Φ0, Φ

osh
0

) (
δMvirt,LPA

q1q̄2,sing

(
Φ0, Φ

osh
0

))�]
=

α

2π

n∑

i,j=1
i�=j

τiτjQiQj

∣∣∣M(0),LPA
q1q̄2

(
Φ0, Φ

osh
0

)∣∣∣
2(
L
(
soshij ,m

2
i

)
+Cij

)
,

(39)

but we use the exact singular virtual corrections in (17)
and (31). In (39), soshij = (p

osh
i +p

osh
j )

2, and L and Cij are
given by (14) and (15), respectively.

2.4 Implementation

We have implemented our strategy in a Mathematica
package called Pole, which works as an extension of the
computer-algebra packages FeynArts3 [59] and Form-
Calc3.1 [60]. To be explicit, Pole extends these packages by
the following features:

– amplitude generation for initial-state hadrons,
– amplitude generation for a given intermediate state
to select only resonant factorizable and resonant non-
factorizable diagrams,
– evaluation of the non-factorizable part of the amplitude
in ESPA,
– reduction of fermion chains using the Weyl–van der
Waerden formalism,
– numerical evaluation of hadronic cross sections,
– numerical evaluation of the virtual corrections in LPA,
– phase-space integration for an arbitrary number of ex-
ternal particles using the generic phase-space generator
of Lusifer [61],
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– numerical evaluation of the real corrections using
phase-space-slicing or the dipole subtraction method.

The main changes for the amplitude generation are the
possibility to specify hadronic initial states as well as the
resonant particles in the intermediate state. The latter
information is used to only generate the resonant factor-
izable and the resonant non-factorizable diagrams. In the
FormCalc part, we have implemented the Weyl–van der
Waerden formalism, which reduces the fermionic spinor
structures down to Weyl-spinor products and Kronecker
deltas in the helicities. Note that our implementation of
the Weyl–van der Waerden method works independently
of the formalism contained in FormCalc4 [62], where the
fermionic structures are numerically evaluated as two-
dimensional matrix–vector products. As an advantage of
our approach with regard to FormCalc4, the matrix elem-
ent is split into helicity amplitudes, and only non-vanishing
components are calculated.
As a consequence, the kinematical dependence of the

amplitudes as calculated by Pole is completely different
from the amplitude given back by FormCalc3.1, so that
we had to rewrite the Fortran part of FormCalc3.1. The
input required by the new code are model parameters,
kinematical cuts, PDF set, as well as the aforementioned
on-shell projection of the outgoing momenta. Using this in-
put, the program automatically calculates hadronic cross
sections and kinematical distributions including real QED
corrections as well as virtual electroweak corrections eval-
uated in LPA. The phase-space integration is done using
the generic Monte Carlo generator of Lusifer [61], which is
able to handle the kinematics of a process with an arbitrary
number of final-state particles. To flatten the propagator
peaks, Lusifer employs the multi-channel importance sam-
pling [63–66] with adaptive weight optimization [67]. Since
the generator was originally designed to calculate Born
cross sections only, we had to extend it to incorporate an
appropriate treatment of soft and collinear singularities.
We implemented both the dipole subtraction method and
the phase-space-slicing technique as presented in Sect. 2.2.
Pole is designed to handle processes involving an arbi-

trary final state and an arbitrary number of resonances.
The applicability is limited to processes where the decay
products are stable, i.e. it cannot handle cascade decays
where unstable particles decay into unstable particles. Fur-
thermore, the treatment of the non-factorizable corrections
as well as the implementation of the phase-space-slicing
and subtraction methods are limited to massless external
particles.

3 Input and checks

3.1 Parameter input and process definition

We consider three classes of processes:

p+p→ νl+ ν̄l+γ+X , l = e, µ, τ , (40)

p+p→ l+ l̄+γ+X , l = e, µ , (41)

p+p→ νl+ l̄+γ+X , l = e, µ . (42)

The first two classes allow one to analyze Zγ produc-
tion, while the third one contains Wγ as intermedi-
ate state. In the following sections, we present results
for the LHC at CM energy

√
S = 14 TeV and an in-

tegrated luminosity L = 100 fb−1 per experiment. We
neglect all fermion masses except for the mass of the
top quark. We nevertheless keep the fermion masses
in arguments of loop integrals as regularization param-
eters for possible collinear divergences, where we use the
values [68, 69]

mu = 0.066GeV , mc = 1.6GeV ,

mt = 178GeV , md = 0.066GeV ,

ms = 0.15 GeV , mb = 4.9 GeV ,

me = 5.109989×10
−4GeV , mµ = 0.105658369GeV ,

mτ = 1.77699GeV . (43)

For the vector-boson masses and decay widths we take [68]

MW = 80.425GeV , ΓW = 2.124GeV ,

MZ = 91.1876GeV , ΓZ = 2.4952GeV , (44)

and the Higgs-boson mass is fixed to

MH = 115GeV . (45)

We use the Gµ scheme, i.e. we define the fine structure
constant in terms of the Fermi constant

α= αGµ =

√
2

π
GµM

2
W s
2
W , (46)

where the quantity s2W = 1−M
2
W/M

2
Z denotes the sine

of the weak mixing angle squared, and we use the value
Gµ = 1.16637×10−5GeV−2 for the Fermi constant. The
definition (46) effectively resums contributions associated
with the evolution of α to theW -boson mass and incorpo-
rates leading universalmt-dependent two-loop corrections.
For the coupling of one real final-state photon, we use in-
stead the value α = α(0) = 1/137.035999, i.e. we rescale
the cross section with α(0)/αGµ . Thus we have for the
lowest-order cross section σ(0) and for the corresponding
corrections σ(1):

σ(0) ∝ α(0)α2Gµ , σ(1) ∝ α(0)α3Gµ . (47)

The terms absorbed in αGµ have to be subtracted from
the finite virtual corrections (35) calculated in the α(0)
scheme, once for each vertex parametrized by αGµ , to avoid
double counting. Since in our case we have two such cou-
plings in the lowest-order cross section, the finite virtual
corrections are evaluated according to

σvirt,LPAq1q̄2, finite, αGµ
(ŝ) = σvirt,LPAq1 q̄2,finite

(ŝ)−2σ(0),LPAq1q̄2
(ŝ)∆r(1).

(48)

The one-loop contribution ∆r(1) to ∆r can for instance be
found in [70].
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We neglect all loop corrections to the quark mixing,
and simply multiply the cross sections of the partonic sub-
processes with the squares of the quark-mixing matrix
elements

Vud = 0.974 , Vus =
√
1−V 2ud ,

Vub = 0 , Vcd =−
√
1−V 2ud ,

Vcs = 0.974 , Vcb = 0 ,

Vtd = 0 , Vtc = 0 ,

Vtb = 1, (49)

forWγ-production processes.
Following our discussion at the end of Sect. 2.1, we neg-

lect the QED corrections to the PDFs.We therefore choose
the only QCD-corrected CTEQ6M set [71] to calculate the
hadronic cross sections and we neglect all contributions of
the initial states containing bottom quarks. Denoting the
momenta of the incoming protons by P1,2 and the final-
state momenta collectively by pfin, the hadronic cross sec-
tion for the Zγ-production processes (40) and (41) can be
written as

σpp(S,Q
2) =

∫ 1

0

dx1

∫ 1

0

dx2
1

2x1x2S

∫
dΦ(pfin)

∑

q=u,d,c,s

×
(
|Mqq̄ (x1P1, x2P2, pfin)|

2
Φ
MS

q|p

(
x1, Q

2
)

×Φ
MS

q̄|p

(
x2, Q

2
)
+ |Mqq̄ (x2P2, x1P1, pfin)|

2

×Φ
MS

q|p

(
x2, Q

2
)
Φ
MS

q̄|p

(
x1, Q

2
) )
, (50)

and we useMcc̄ =Muū andMss̄ =Mdd̄ in the zero mass
limit for the external fermions. For the Wγ-production
process (42), the effects of the quark mixing are taken into
account by setting the quark-mixing matrix to the unit
matrix for the calculation of the amplitudes, and by convo-
luting the squared amplitudes according to

σpp(S,Q
2) =

∫ 1

0

dx1

∫ 1

0

dx2
1

2x1x2S

∫
dΦ(pfin)

∑

q=u,c

∑

q′=d,s

∣∣Vqq′
∣∣2

×
( ∣∣Mqq̄′ (x1P1, x2P2, pfin)

∣∣2 ΦMSq|p
(
x1, Q

2
)
Φ
MS

q̄′|p

(
x2, Q

2
)

+
∣∣Mqq̄′ (x2P2, x1P1, pfin)

∣∣2 ΦMSq|p
(
x2, Q

2
)
Φ
MS

q̄′|p

(
x1, Q

2
) )
,

(51)

and we use Mud̄ =Mus̄ =Mcd̄ =Mcs̄ for unit quark-
mixing matrix.
Finally, for the typical energy scale Q used to evaluate

the PDFs we choose [14]

Q2 =
1

2

(
M2V +p

2
T,V +p

2
T,γ

)
, V = Z ,W , (52)

where pT,V denotes the transversemomentum of the reson-
ance

pT,V =⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pmissT for pp→ νlν̄lγ ,√(
plT,x+p

l̄
T,x

)2
+
(
plT,y+p

l̄
T,y

)2
for pp→ ll̄γ ,

√(
plT,x+p

miss
T,x

)2
+
(
plT,y+p

miss
T,y

)2
for pp→ νl l̄γ .

(53)

The missing transverse momentum pmissT is here defined as
the sum of the transverse momenta of all particles visible
in the detector, whereas pmissT,x and p

miss
T,y denote missing mo-

mentum in x and y direction, respectively.We use the same
scale Q in the calculation of the electromagnetic MS sub-
traction term (10).
We have implemented a general set of cuts, proper for

LHC analyses. In order to specify this set, we introduce
the azimuthal–pseudorapidity separation between particle
i and j

∆Rij =
√
(ηi−ηj)2+(ϕi−ϕj)2 , (54)

where ϕi is the azimuthal angle parametrizing the spatial
part of the external momentum pi, and the corresponding
pseudo-rapidity

ηi =− ln

(
tan
θi

2

)
(55)

is a measure of the production angle θi of the considered
particle with respect to the beam.
In order to define observables that are free from soft and

collinear singularities, we use the following recombination
scheme.

– Photons close to the beam, i.e. with a rapidity |ηγ | >
ηrec = 2.5, or with too small energy, i.e. Eγ < Erec =
2GeV, are treated as invisible, i.e. they only contribute
to the missing momentum.
– Photons with |ηγ | < ηrec = 2.5 and Eγ > Erec = 2GeV
which are close to a final-state charged lepton or an-
other photon, i.e. which fulfil ∆Rγi <R

rec = 0.1 for at
least one i = e, µ, γ, are recombined. This means that
the momentum of the photon and the momentum pi of
the final-state charged lepton or photon for which ∆Rγi
has the lowest value are added and considered as an ef-
fective lepton or photon momentum.2

– Photons with |ηγ | < ηrec = 2.5, Eγ > Erec = 2GeV,
and ∆Rγi >R

rec = 0.1 for all i= e, µ, γ are treated as
visible.

For the acceptance cuts, we consider an event to con-
tribute to the cross section if the momenta for the leptons

2 In our simplified analysis, we treat muons like electrons as
far as recombination is concerned. In practice, they have to be
treated differently (see for instance [72, 73]).
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after possible photon recombination and the momentum of
at least one of the visible final-state photons fulfil the fol-
lowing requirements:

– pγT > p
γ,c
T = 50GeV (100GeV) for at least one photon in

case ofWγ (Zγ) production,
– plT > p

l,c
T = 20GeV for all final-state charged leptons,

– ∆Rij >R
c = 0.7, i, j = l, γ, for the rapidity–azimuthal

angle separation (54) between two charged leptons and
between charged leptons and visible photons.
– |η| < ηc = 2.5 for at least one of the final-state photons
and all final-state charged leptons.
– pmissT > pmiss, cT = 50GeV (100GeV) for the missing
transverse momentum in case of Wγ (Zγ) production
for final states containing at least one neutrino.

Furthermore, we introduce cuts on the invariant masses of
the resonant gauge bosons. These cuts enhance the contri-
butions of the gauge-boson pair-production process with
respect to background diagrams and simultaneously re-
duce the error of the LPA. We impose the so-called recon-
struction cut

MZ−20GeV <
√
(p3+p4)

2
<MZ+20GeV (56)

on the phase space for the process (41). For the case of
Wγ-production (42), the neutrino momentum is not an ob-
servable, so that one has to rely on the missing transverse
momentum to restrict the squared energy of the lepton pair
to the phase-space region around the resonance. To this
end, a cut on the transverse mass

M lνT <MW +20GeV (57)

is appropriate, where the transverse mass for a lepton–
neutrino pair lνl is defined as

M lνT =√(
|pmissT |+ |pT,l|

)2
− (pmissx +px,l)

2−
(
pmissy +py,l

)2
.

(58)

For the case of the Z-boson decaying into two neutrinos,
see (40), none of the decay products is visible, and thus
neither of the above reconstruction cuts can be imposed.
For the bremsstrahlung process the scale Q is fixed

using the possibly recombined momenta as follows. If both
photons are visible, we use

Q2 =
1

2

(
M2V +p

2
T,V +p

2
T,γ1
+p2T,γ2

)
, V = Z,W,

(59)

to evaluate the PDFs. If only one photon is visible, the
expression used for the scale Q depends on the consid-
ered final state. For the ll̄γγ final state, we reconstruct
the transverse momentum of the bremsstrahlung particle
from momentum conservation and use the expression (59).
When the final state contains one or more neutrinos, the
bremsstrahlung momentum contributes to the missing mo-
mentum and we use (52) and (53) instead.

3.2 Checks of the calculation

To check the amplitudes generated by Pole numerically,
we performed an explicit paper-and-pencil calculation of
the Born amplitudes, the non-factorizable virtual correc-
tions, and the real corrections. We have listed the corres-
ponding expressions in AppendixA. In addition, we com-
pared the Born amplitude and the bremsstrahlung am-
plitude for zero width numerically to the result of Mad-
graph [74, 75] for some phase-space points and found com-
plete agreement. For a check of the amplitude for the fac-
torizable virtual corrections, we generated the diagrams
for the partonic processes corresponding to (4) by means
of FeynArts. We then switched off the non-resonant and
non-factorizable diagrams by hand, and translated the cor-
responding amplitudes into Fortran code using FormCalc4.
In the code thus generated, we replaced the resonant prop-
agator by the corresponding propagator including a finite
width. The resulting amplitudes were checked by compar-
ing to the output of Pole for some set of phase-space points,
as well as by comparing the integrated cross sections, yield-
ing in each case complete agreement.
The numerical evaluation of the finite virtual correc-

tions (35) was tested by numerically varying the UV reg-
ulator, i.e. the mass parameter µ for the dimensional regu-
larization, the infrared regulator, i.e. the infinitesimal pho-
ton mass mγ , and the masses of the external fermions.
The finite virtual corrections were found to be completely
independent of these parameters, and we fixed the UV reg-
ulator to µ= 1GeV, the infrared regulator tomγ = 1GeV,
and the masses of the external fermions to the values listed
in (43).
To check the treatment of the real corrections, we cal-

culated the dependence of the sum of (16) and (17) on the
slicing cut parameters δs and δc and compared the corres-
ponding values to the sum of (22) and (31) obtained from
the dipole subtraction method. In Fig. 1 we show the de-
pendence on δs for fixed δc = 10

−4 and the dependence on
δc for fixed δs = 10

−3 for the process pp→ νl l̄γ+X. The
error bars reflect the uncertainty of the Monte Carlo in-
tegration. The cross section shows a plateau over the full
considered range for δc, whereas the variation with δs leads
to a plateau in the region 10−5 < δs < 10

−2. In addition,
the numerical values obtained in these ranges agree with
those obtained by using the subtraction method within the
integration error, which we indicate in Fig. 1 by the ho-
rizontal lines. The same analysis for the other considered
processes yielded similar results. For the results to be pre-
sented in the next section, we accordingly fixed the slicing
cuts to δs = 10

−3 and δc = 10
−4.

Finally, tree-level amplitudes and phase-space integra-
tion have been tested by comparing the outcome of our
code with the results obtained with the program used for
the analyses in [29]. This latter code employs matrix elem-
ents generated by means of PHACT [76], a set of rou-
tines based on the helicity-amplitude formalism of [77],
and an independent integration method. For the sake of
comparison, the original version of the program was ex-
tended to include the Zγ-production processes (40) and
(41). The results for all three Born cross sections agree
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Fig. 1. Dependence of the sum of the singular virtual corrections, the complete real corrections, and the term arising from theMS
definition of the PDFs for pp→ νl l̄γ+X on the phase-space-slicing cut parameters. The horizontal lines indicate the error bars of
our results obtained by using the subtraction method

at the permille level. Furthermore, we numerically cross-
checked the lowest-order results for the distributions to be
presented in the next section for all three processes. Com-
plete agreement has been reached, which confirms our im-
plementation of phase-space integration, cut routines, and
histogram generation.

4 Numerical results

In this section, we illustrate the effect of the electroweak
corrections on hadronic Wγ and Zγ production at the
LHC. For the process (40) we sum over all three neutrino
flavors, while for the two processes (41) and (42) we include
the first two lepton families only.
In the definition of the distributions for these processes,

the possible presence of two photons in the final state, one
coming from the real corrections, can lead to ambiguities.
When observables of the final-state photon are involved,
our prescription is to attribute the event weight to the bin
corresponding to the photon with the largest energy.

4.1 Total cross sections

In Table 1, we show the total hadronic cross section for
the three processes (40)–(42). The second column contains
the lowest-order results, while the third and fourth entries
display the value of the O(α) corrections and their con-
tribution relative to the lowest-order cross section, respec-
tively. For the three considered processes, the electroweak
corrections are negative and of the order of −2% to −7%.
This is to be compared with the last column of Table 1,
where we show an estimate of the statistical error based
on an integrated luminosity L = 100 fb−1 for two experi-
ments. As can be seen, the size of the electroweak correc-

Table 1. Total lowest-order cross section (second column) as
well as the electroweak O(α) corrections in absolute size (third
column) and in percent of the lowest-order cross section (fourth
column) for the three considered final states. The last col-
umn shows the statistical error for an integrated luminosity of
L= 2×100 /fb

σ
(0)
pp (fb) σ

(1),tot
pp (fb) 1/

√
2Lσ

(0)
pp (%)

νlν̄lγ 212.26 (7) −9.65 (3) −4.5% 0.5%
ll̄γ 38.99 (9) −2.61 (7) −6.7% 1.1%
νl l̄γ 124.57 (8) −2.36 (5) −1.9% 0.6%

tions well exceeds the statistical uncertainty. They are of
the same order of magnitude as the systematic error, which
is expected to be dominated by the error on the PDFs
and thus presently of the order of 5% for processes initi-
ated by quarks. The systematic uncertainty could possibly
be reduced by considering ratios of cross sections. On the
other hand, the size of the O(α) corrections is strongly
cut dependent and in fact increases with growing CM en-
ergy and vector-boson scattering angle. Larger values for
the electroweak corrections are found by choosing, for in-
stance, a more stringent cut on the transverse momentum
of the photon. Such a constraint is useful for new-physics
searches, although decreasing the statistics (see [29] and
references therein). Also, distributions can be differently
affected by the radiative corrections according to the spe-
cific observable at hand. In the following sections we illus-
trate this point for some sample variables.

4.2 Distributions for pp→ νlν̄lγ+X

We begin by considering distributions for pp→ νlν̄lγ+X.
The error bars in the following plots result from the Monte
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Fig. 2. Distributions in energy (left plot) and rapidity (right plot) of the final-state photon for the process pp→ νlν̄lγ+X, l =
e, µ, τ . The inserted plots show the relative O(α) corrections in percent normalized to the lowest order

Carlo integration errors. In the left plot of Fig. 2, we show
the energy distribution of the final-state photon. As previ-
ously mentioned, this distribution can be used to probe the
existence of new particles which escape detection. These
particles, once produced along with the photon, would lead
to an excess of events in the high-energy domain. The kink
at Eγ = 600GeV is due to the cut |η|< ηc on the rapidity
of the final-state photon. This cut restricts the cosine of the
photon production angle θγ in the laboratory frame to the
interval

exp−2η
c
−1

exp−2ηc +1
< cos θγ <

exp2η
c
−1

exp2ηc +1
, (60)

so that for our choice ηc = 2.5

pγT
Eγ
= | sin θγ |> 0.163071 . . .≈

1

6
. (61)

Since we also applied a cut of pγ,cT = 100GeV on the trans-
verse momentum of the photon, this condition is always
fulfilled for Eγ � 600GeV and the rapidity cut is never ap-
plied for these photon energies. For Eγ � 600GeV, on the
other hand, the rapidity cut will start to exclude more and
more events, which leads to a steeper decrease of the Born
and NLO distributions. Assuming an LHC luminosity of
L= 2×100 /fb, the bin Eγ = 800±10GeV collects a con-
tribution of dσ/dEγ ≈ 5×10−2 fb/GeV to the total cross
section and will thus contain about

Nev ≈ L×
dσ

dEγ
∆Eγ = 200 fb−1×

5×10−2 fb

GeV
20GeV

= 200 (62)

events, where ∆Eγ = 20GeV is the bin width. In this en-
ergy region, the electroweak corrections are of the order
of −10%. The increase of the corrections with Eγ can be

attributed to large logarithms of Sudakov type. The elec-
troweak corrections should therefore be included to match
the experimental accuracy. This is the first calculation of
theO(α) corrections to the photon spectrum for νlν̄lγ final
states. Up to now, only QCD-corrected distributions have
been computed. Since the electroweak corrections reduce
cross sections and distributions, considering only lowest-
order or QCD-corrected results could overestimate the SM
background when looking for new particles. An excess of
events in the high-energy domain could then be misinter-
preted as compatible with the SM predictions and could
therefore be missed.
The right plot of Fig. 2 shows the distribution in the

photon rapidity. The electroweak corrections are here of
the order of −3% to −5%, and are thus smaller than in the
case discussed above and of the order of the present sys-
tematic uncertainty from PDFs. This is because all bins
receive the dominant contributions from events with low
CM energies, where the electroweak corrections are small.
An estimate of the event rate as in (62) applied to the bin
ηγ = 0±0.05 gives 900 events.

4.3 Distributions for pp→ ll̄γ+X

We turn now to the process (41), mediated by Zγ produc-
tion, and we show in Fig. 3 some sample distributions. The
upper left plot displays the photon transverse-momentum
distribution. The kink at pγT = 250GeV can be explained
by the cut ∆Rll̄ >R

c on the rapidity–azimuthal angle sep-
aration of the two leptons resulting from the Z-boson. The
position of the kink is approximately given by

pγT = p
Rc

T ≡
2MZ√

2 exp(Rc)−1−1
. (63)
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Fig. 3. Distributions in the transverse momentum of the final-state photon (upper left plot), in the γZ invariant mass (upper right
plot), in the photon rapidity (lower left plot), and in the photon–Z-boson rapidity difference (lower right plot) for pp→ ll̄γ+X,
l = e, µ. The inserted plots show the relative O(α) corrections in percent normalized to the lowest order

For pZT = p
γ
T < p

Rc

T the Rc cut is not effective, while for

pZT = p
γ
T > p

Rc

T the decay products of the Z-boson are so

strongly boosted that this cut eliminates many of the
events. The effects of the electroweak corrections to this
distribution have already been studied in [30] for an on-
shell final-state Z-boson, and with the real corrections in-
cluded in the soft and collinear limits only. In this case,
the corrections were found to be large and negative, of the
order of −20%, and to increase in absolute size with rising
pγT . As can be seen from Fig. 3, our calculation largely con-

firms these results. Since the effects of the anomalous cou-
plings are most pronounced in the high-pT region, the elec-

troweak corrections could modify the experimental sensi-
tivity to possible new physics. For the process considered
here, the QCD corrections to the distribution in the photon
transverse momentum have been calculated in [18, 19, 21].
If applying a jet veto, they are found to range between
+60% and −20% [21]. At NLO, the contributions arising
from electroweak and QCD corrections are thus compara-
ble in magnitude. Including the electroweak radiative ef-
fects in the experimental analysis is therefore mandatory in
order not to overestimate the SM background.
In the upper right plot of Fig. 3, we show the distribu-

tion in the final-state invariant mass. A simple estimate as
in (62) shows that the process should be observable up to



138 E. Accomando et al.: Electroweak corrections to Wγ and Zγ production at the LHC

MγZinv = 750–1000GeV. As can be seen from the inset plot,
the total electroweak corrections amount to roughly −8%,
independently of the MγZinv value. Electroweak radiative-
correction effects are thus relevant for this important dis-
tribution. Earlier results for the electroweak corrections to
the invariant-mass distribution have been published in [30]
under the aforementioned approximations. Large negative
corrections of the order of −15% were found, increasing
in magnitude towards larger invariant masses. Comparing
these results to the curve shown in the inset of the up-
per right plot in Fig. 3, we rather find the relative size of
the virtual and real corrections approaching a plateau with
rising invariant mass. We attribute this effect to angular-
dependent logarithms, which are enhanced for events with
photons collinear to the beams and compensate the Su-
dakov logarithms. Such events are eliminated by a cut on
pγT and thus do not influence the p

γ
T distribution, but they

contribute to the invariant-mass distribution also for large
invariant masses. Thus, compared to the results published
in [30], the inclusion of the real corrections reduces the
impact of the electroweak corrections for large invariant
masses.
The distribution in the photon rapidity is shown in the

lower left plot of Fig. 3. The relative size of the electroweak
corrections can be seen from the inserted plot to be of the
order of−7%. Finally, the photon–Z-boson rapidity differ-
ence is shown in the lower right plot of Fig. 3. While the
corresponding corrections are at a similar level as for the
two previous distributions in the central region, they be-
come large and positive near |∆ηγZ | ≈ 4. For |∆ηγZ | > 5,
the cut |ηγ |< ηc = 2.5 eliminates all events with only one
photon and a pair of leptons in the final state, and only
bremsstrahlung events contribute. Thus, the smallness of
the lowest-order cross section causes the large relative cor-
rections near and above |∆ηγZ | ≈ 4. However, the event
rate expected at the LHC in this region is too small for ex-
perimental observation. The remaining central part of the
curve does not present novelties compared to the two pre-
vious distributions.

4.4 Distributions for pp→ νl l̄γ+X

Turning next to the Wγ production process, we show
in Fig. 4 some distributions for pp→ νl l̄γ+X, l = e, µ.
Starting with the transverse-momentum distribution of
the photon in the upper left plot, an estimate as in (62)
shows that the event rate should be observable up to
pγT = 300–400GeV. An analysis of the effects of the elec-
troweak corrections on this distribution summed over νl l̄
and lν̄l final states has already been published in [29], tak-
ing into account the W -boson decay but including only
the leading logarithmic virtual corrections to the produc-
tion subprocess in the high-energy approximation. Large
negative corrections were found, which can reach up to
−12% at pγT = 400GeV. As can be seen from the inset
plot, we reproduce this result. At pγT = 400GeV, the elec-
troweak corrections are found to contribute about −13%
of the Born result, which is well above the systematic and
statistical errors. The QCD corrections to the transverse-
momentum distribution of the photon have been analyzed

in [21]. If applying a jet veto, large positive corrections of
up to 60% for low transverse momenta have been found.
They decrease to −5% to −10% of the Born cross sec-
tion at pγT = 400GeV. For high transverse momenta, the
electroweak corrections are thus of the same order of mag-
nitude or even larger than the QCD corrections, and fur-
ther reduce the lowest-order distribution. Again, a data
analysis performed just including QCD corrections could
overestimate the SM background in anomalous coupling
measurements.
In the upper right plot of Fig. 4, we display our results

for the distribution in the transverse mass of the final-state
lepton–neutrino pair as defined in (58). The curves termi-
nate at the cut value M lνT,c =MW +20GeV ≈ 100.4GeV.
The W -boson resonance can be observed as a pronounced
peak, an effect which could be used to determine the W -
bosonmass as a consistency check. The electroweak correc-
tions can be seen from the inserted plot to contribute most
at the peak, where they amount to −4% of the Born cross
section.
An interesting property of angular distributions forWγ

pair production is the radiation zero, i.e. a kinematical con-
figurationwhere all tree-level helicity amplitudes of the par-
ton process are exactly zero. The radiation zero appears at

cos θ̂γ =
Qu+Qd
Qu−Qd

=
1

3
, (64)

where θ̂ is the scattering angle of the photon in the par-
tonic CM frame, and Qu and Qd denote the charge of the
up quark and down quark, respectively. At the LHC, the
radiation zero should be observable as a dip in the distribu-
tion in the rapidity difference between the photon and the
charged lepton coming from the W -boson [3, 21]. It arises
from gauge cancellations and is characteristic for the SM.
As a consequence, deviations from the SM gauge struc-
ture generally tend to fill in the dip, such that an analysis
of the radiation zero provides an excellent opportunity to
probe new physics. QCD corrections generally enhance the
cross section at the radiation zero [3]. Depending on the
process definition, the effect can be quite dramatic. If no
jet veto is applied, the dip arising from the radiation zero
is completely washed out. If selecting only events without
final-state jets, a dip at the level of 20% survives. In the
bottom right plot of Fig. 4, we display our results for the
distribution in the rapidity difference between the photon
and the charged lepton, which exhibits the dip originat-
ing from the radiation zero at ∆ηlγ ≈ 0. The electroweak
corrections hardly influence the dip and amount to about
−2%. This is probably too small to have an observable
impact on the data analysis. The smallness of the O(α)
correction has again its origin in the fact that a given bin
receives the main contributions from the low-energy do-
main of phase space, where the electroweak corrections
are small. Selecting kinematical regions characterized by
larger energies and scattering angles would increase the
size of the electroweak corrections, at the same time en-
hancing the radiation zero dip, as shown in [29], but de-
crease the statistics.



E. Accomando et al.: Electroweak corrections to Wγ and Zγ production at the LHC 139

Fig. 4. Distributions in the transverse momentum of the final-state photon (upper left plot), in the transverse mass of the lepton–
neutrino pair (upper right plot), in the photon rapidity (lower left plot) and in the lepton–photon rapidity difference (lower right
plot) for pp→ νl l̄γ+X, l = e, µ. The inserted plots show the relative electroweak corrections in percent normalized to the lowest
order

Analogous remarks apply to the electroweak correc-
tions to the photon-rapidity distribution shown in the bot-
tom left of Fig. 4. The central peak in this distribution
is caused by events with small pγT and disappears if the
cut pγ,cT = 50GeV is increased. The peaks in forward and
backward direction are also present for larger pγ,cT . They
result from the peaking of the partonic matrix element in
the direction of the incoming up quark which is addition-
ally amplified by the boost from the CM to the laboratory
system, which goes preferably along the direction of the va-
lence quark.

4.5 Comparison with virtual correction
in high-energy approximation

It is interesting to compare our results for the electroweak
corrections to hadronic Wγ production with those ob-
tained in [29]. In this latter calculation, the virtual correc-
tions were determined for the production subprocess only
and using the high-energy approximation (HEA) of [78–
80]. In this approximation, all terms that vanish with
MW/

√
ŝ at high energies are neglected, and only the log-

arithmic contributions to the loop integrals of the form
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ln2(ŝ/M2W ), ln(ŝ/M
2
W ) ln(ŝ/x̂) and ln(ŝ/M

2
W ) are taken

into account, where x̂ = t̂, û denotes one of the Mandel-
stam variables for the production subprocess. The use of
the HEA is justified by requiring a large transversemomen-
tum of the final-state photon, which results in large values
for the partonic CM energy

√
ŝ compared to the W -boson

mass, and thus to large values for the above logarithms.
In order to tune our results to those of [29], we gener-

ated the amplitudes for the virtual corrections using Pole,
but we switched off the diagrams involving the corrections
to the decay subprocess.We evaluated the amplitudes thus
obtained numerically by adapting the input to the pa-
rameter and cut values used in [29]. For this comparison,
we moreover summed up the process (42) and its charge-
conjugate, i.e. we considered bothW+γ andW−γ produc-
tion. The resulting numerical values for the Born cross sec-
tion and the finite virtual corrections are shown in Table 2
for some values of the cut on the transverse momentum of
the final-state photon. The numbers in parentheses repre-
sent the integration errors in the last digits. Note that the
values shown in Table 2 do not exactly correspond to the
results presented in a similar table in [29]. This is because
the numbers in [29] were obtained with an incorrect im-
plementation of the azimuthal–pseudorapidity separation
(54). After correcting this error, we get in the approach
of [29] the numbers given in columns 2–4 of Table 2.
The results for the Born cross section agreewithin errors

at the permille level.Comparing our results for the finite vir-
tual corrections to those obtained in the HEA in [29], one
would expect a sizeable difference for low pγ,cT values, which
decreases for higher values of this cut to the level of 1%–2%.
However, thenumbers inTable 2point rather towards a con-
stant difference of approximately 5%–6%.
In order to understand this effect, we used the fact that

Pole employs the FF-based package LoopTools [81, 82],
which numerically reduces all tensorial loop integrals onto

Table 2. Lowest-order cross section and finite virtual corrections to the production subprocess for pp→W±γ+
X→ lνlγ+X, where lνl = lν̄l+ l̄νl and l= e, µ

Ref. [29] this work

p
γ,c
T (GeV) σ

(0)
pp (fb) σvirtpp,finite(fb) δvirtpp,finite σ

(0)
pp (fb) σvirtpp,finite(fb) δvirtpp,finite

250 6.01 −0.292 −4.86% 6.02 (3) −0.649 (3) −10.8%
450 0.712 −9.78×10−2 −13.74% 0.711 (4) −0.1372 (7) −19.3%
700 9.30×10−2 −2.06×10−2 −22.12% 9.31 (6)×10−2 −2.54 (2)×10−2 −27.3%
1000 1.25×10−2 −3.72×10−3 −29.6% 1.253 (9)×10−2 −4.32 (3)×10−3 −34.5%

Table 3. Finite virtual corrections to the production subprocess for pp→W±γ+X→ lνlγ+X in HEA split
into electroweak logarithmic contributions σ

(1)
EWLog, the QED remnants ∆σ

(1)
QED, as well as the remaining

contributions σ
(1)
rem

p
γ,c
T (GeV) σ

(1)
EWLog(fb) δ

(1)
EWLog ∆σ

(1)
QED(fb) δ

(1)
QED σ

(1)
rem(fb) δ

(1)
rem

250 −0.364(1) −6.05% 8.6(1)×10−2 1.43% −0.360(2) −5.99%
450 −0.1026(4) −14.4% 1.13(2)×10−2 1.59% −4.29(2)×10−2 −6.04%
700 −2.11(1)×10−2 −22.6% 1.40(3)×10−3 1.50% −5.31(3)×10−3 −5.71%
1000 −3.77(3)×10−3 −30.1% 1.74(5)×10−4 1.39% −6.63(5)×10−4 −5.29%

a set of scalar basis integrals. We replaced each loop in-
tegral in this basis set by the corresponding expression in
the HEA and split the latter into different contributions.
The total electroweak corrections obtained in this way are
smaller than those in Table 2 by at most half a percent. The
subcontributions obtained with this procedure are shown
in Table 3.
The electroweak logarithmic contributions in the sec-

ond and third column of Table 3 result from the contri-
butions to the basic loop integrals that involve only loga-
rithms of the form ln2(ŝ/M2W ), ln(ŝ/M

2
W ) ln(ŝ/x̂), x= t̂, û

and ln(ŝ/M2W ). This is the approximation used in [29].
As can be seen by comparing these numbers to the re-
sults in the third and fourth column in Table 2, the leading
logarithmic contributions differ by about 1.2% for pγ,cT =
250GeV and this difference decreases to the permille level
for higher cut values. Thus we can reproduce the results
of [29] to a satisfying accuracy by keeping only the elec-
troweak logarithms.
The QED contributions in the fourth and fifth column

of Table 3 are obtained by keeping only terms involving
logarithms in the regulators for the masses of the pho-
ton and the external light fermions, i.e. logarithms of the
form ln(mγ

2/M2W ) or ln(m
2
i /M

2
W ), in the loop integrals

and subtracting the finite virtual corrections as given in
(39). We here observe a roughly energy-independent con-
tribution of about 1.5%. This contribution results from the
fact that the subtraction term (39) involves logarithms of
the form ln(mγ

2/sij) and ln(m
2
i /sij) while in the HEA

they appear as ln(mγ
2/M2W ) and ln(m

2
i /M

2
W ).

Finally, the contributions listed in the sixth and seventh
column of Table 3 result from all remaining terms in the
HEA, i.e. logarithms depending only on ratios of kinemati-
cal variables and constant terms in the high-energy expres-
sions of the basic loop integrals, as well as extra constant
terms arising from the reduction of tensor loop integral to
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Table 4. The non-leading contributions to the virtual corrections to the production subprocess for pp→
W±γ+X → lνlγ+X in HEA split up into terms σ

(1)
rem,NoLog containing no angular-dependent logarithms,

into terms σ
(1)
rem,Log depending on single angular-dependent logarithms as well as into terms σ

(1)

rem,Log2
de-

pending on angular-dependent logarithms squared

pcT(GeV) σ
(1)
rem,NoLog(fb) δ

(1)
rem,NoLog σ

(1)
rem,Log(fb) δ

(1)
rem,Log σ

(1)

rem,Log2
(fb) δ

(1)

rem,Log2

250 −1.55(8)×10−2 −0.26% −0.107(1) −1.78% −0.238(2) −3.95%
450 −4.13(8)×10−3 −0.58% 1.139(2)×10−2 −1.97% −2.48(2)×10−2 −3.50%
700 −6.94(9)×10−4 −0.74% −1.78(2)×10−3 −1.91% −2.83(2)×10−3 −3.05%
1000 −1.09(1)×10−4 −0.87% −2.25(3)×10−4 −1.79% −3.29(3)×10−4 −2.62%

scalar loop integrals. These remaining terms yield a contri-
bution of 5%–6% and thus make up the largest part of the
difference between our results and those of [29].
In order to trace the origin of this large effect, we fur-

ther split the remaining contributions to the basic loop in-
tegrals as shown in Table 4. The numbers in the fourth and
fifth column comprise the contributions linear in the purely
angular-dependent logarithms, i.e. logarithms of the form
ln(ŝ/x̂), x = t̂, û, whereas the numbers in the sixth and
seventh column correspond to the terms containing these
logarithms squared. As can be seen from Table 4, the
contributions linear and quadratic in the purely angular-
dependent logarithms vary only little with increasing en-
ergy, but contribute with about −2% and −(3−4%), re-
spectively, i.e. they make up the bulk of the remaining con-
tributions. The large size of the contributions of the purely
angular-dependent logarithms can be explained by the en-
hancement of the cross section of the considered processes
in the forward and backward directions. Since in these re-
gions ŝ/t̂ or ŝ/û are small the purely angular-dependent
logarithms become large. The contributions of these log-
arithms are the source of comparably large difference be-
tween the corrections in the HEA of [29] and the results
of this paper. On the other hand, as shown in the second
and third column of Table 4 the non-logarithmic remain-
ing terms contribute to the cross section only below the
percent level. The increase of this contribution with rising
transverse-momentum cut of the photon can be attributed
to the energy dependence of those parts of the matrix elem-
ents that have not been evaluated in the HEA.
We thus find that, for processes dominated by contribu-

tions coming from phase-space regions with small kinemat-
ical variables, the accuracy of the HEA which only takes
into account enhanced logarithms of ŝ/M2 may only be at
the level of several percent, unless the enhanced angular-
dependent logarithms are included as well.

5 Summary and conclusions

We have calculated the electroweak corrections to Zγ and
Wγ production at the LHC, with Z and W decaying into
leptons. For the Born cross sections and the real correc-
tions we use complete matrix elements. The virtual correc-
tions are included in the leading-pole approximation. For
a treatment of the soft and collinear divergences, we used

the dipole subtraction method as well as the phase-space-
slicing technique.
We have implemented our strategy in a Mathematica

package called Pole, which works as an extension of the
programs FeynArts3 and FormCalc3.1 and is designed to
calculate electroweak corrections in leading-pole approxi-
mation for hadronic or partonic processes.We have applied
the program to the pp→ νlν̄lγ, ll̄γ, νl l̄γ processes at the
LHC, and tested the results extensively. As part of our
checks we have performed a comparison with the virtual
corrections evaluated in the high-energy approximation,
which reveals that angular-dependent logarithms can give
effects of several percent at high energies.
For the above-mentioned processes and typical LHC

cuts, we find electroweak corrections of the order of
−5% for total cross sections and angular distributions as,
for instance, the radiation zero in Wγ production. For
transverse-momentum and energy distributions, the O(α)
corrections contribute up to−20% of the lowest-order cross
section. Their influence is thus well above the systematic
and statistical errors, and may be of the same size as the
QCD corrections or even larger, depending on the cut set-
tings. Consequently, electroweak radiative effects have to
be included in the experimental analysis when looking
for the existence of anomalous vector-boson couplings or
for the production of new particles via hadronic produc-
tion of Zγ andWγ. Thus, the Monte Carlo generators for
LHC should include besides QCD corrections also the elec-
troweak corrections.

Acknowledgements. We thank M. Roth for his invaluable help
concerning the Monte Carlo generator and S. Dittmaier for
carefully reading the manuscript. This work was supported in
part by the Italian Ministero dell’Istruzione, dell’Università e
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Appendix A: Analytical results
for the amplitudes

In this appendix, we summarize analytical results for
those parts of the amplitudes that are compact enough
to be explicitly displayed. We present the analytical ex-
pressions for the Born amplitude in AppendixA.1, the
amplitude corresponding to the non-factorizable correc-
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tions in AppendixA.2, and the amplitudes for the QED
bremsstrahlung processes in A.3. The calculation of the
Born and bremsstrahlung amplitudes are carried out in the
framework of theWeyl–van derWaerden formalism [83, 84]
as presented in [85].

A.1 The lowest-order amplitudes

The helicity amplitudes of all partonic processes (4) can be
obtained from the generic set of Feynman diagrams shown
in Fig. 5. The amplitude corresponding to these diagrams
can be written as

M(0)σ1σ2σ3σ4λ5
c1c2

(p1, p2, p3, p4, p5) =

−2
√
2e3δc1c2δσ1−σ2δσ3−σ4

∑

V

C
σ1
V q̄2q1

C
σ3
V f̄3f4

×Bσ1σ3λ5V (p1, p2, p3, p4, p5, Qq1 , Qq2 , Qf3 , Qf4) ,

(A.1)

where the quantities Qi, i = 1, . . . 4 denote the charges of
the external fermions (the charges of the external an-
tifermions are given by −Qi.) and c1, c2 are the color in-
dices for the initial-state quarks. The sum over V runs over
all SM vector bosons. The non-vanishing gauge couplings
C±
V f̄a fb

of a fermion fb and an antifermion f̄a to the vector

boson V are listed in Table 5 using the following conven-
tions. The particle indices l (q) denote leptons (quarks).
The charges and the third component of the isospin of the
fermion f are denoted by Qf and I

3
f , respectively. The

quantities sW and cW are the sine and the cosine of the
weak mixing angle, whereas α is the fine structure con-
stant. Finally, δij and Vij denote the Kronecker delta and
the quark-mixingmatrix. Note, that the elementary charge
e has been extracted from the couplings.
As discussed in Sect. 2.3, the amplitude can be split into

a resonant and a non-resonant part. This splitting can be
done on the level of the generic functions

Bσ1σ3λ5V =Bres,σ1σ3λ5V +Bnres,σ1σ3λ5V . (A.2)

The resonant part comprises all contributions from dia-
grams containing the resonant propagator of the decaying

Fig. 5. Tree-level diagrams for q1+ q̄2→ f3+ f̄4+γ

Table 5. Coupling constants of quarks and leptons to the
gauge bosons V = γ, Z,W±

C±
γf̄2f1

=−Qf1δf1f2 , f1,2 = q, l

Cσ
Zf̄2f1

=

{
− sWcWQf1δf1f2 ,
I3f1
−s2WQf1
sWcW

δf1f2 ,

for σ =+

for σ =−
f1,2 = q, l

Cσ
W− l̄νl

=

{
0 ,
1√
2sW
,

for σ =+

for σ =−
l= e, µ, τ

CσW+ν̄ll
=

{
0 ,
1√
2sW
,

for σ =+

for σ =−
l= e, µ, τ

CσW−q̄2q1
=

{
0 ,
1√
2sW
V
†
q2q1 ,

for σ =+

for σ =−
q1 = u,c,t q2 = d,s,b

CσW+q̄2q1
=

{
0 ,
1√
2sW
Vq2q1 ,

for σ =+

for σ =−
q1 = d,s,b q2 = u,c,t

particle V , and thus corresponds to the amplitude originat-
ing from the diagrams in the first row of Fig. 5. Applying
the Weyl–van der Waerden formalism as presented in [85]
to these diagrams, the generic function for all helicities pos-
itive is given by

Bres,+++V (p1, p2, p3, p4, p5, Q1, Q2, Q3, Q4) =

−PV (p3+p4)
〈p1p4〉2

〈p4p5〉

{
Q1〈p3p2〉�

〈p1p5〉
+
Q2〈p3p1〉�

〈p2p5〉

− (Q2−Q1)PV (p1+p2)〈p3p5〉
�〈p2p1〉

�

}
. (A.3)

The non-resonant part of the Born amplitude, on the other
hand, receives contributions from the remaining diagrams
in the second row of Fig. 5. Expressed inWeyl-spinor prod-
ucts, the generic function for all helicities positive reads

Bnres,+++V (p1, p2, p3, p4, p5, Q1, Q2, Q3, Q4) =

PV (p1+p2)
Q3〈p1p4〉2〈p2p1〉�

〈p3p5〉〈p4p5〉
. (A.4)

HereMV is the mass and ΓV the decay width of the vector
boson V , and the corresponding propagators are denoted
as

PV (k) =
1

k2−M2V − iMV ΓV
. (A.5)

The Weyl-spinor products are defined by

〈pq〉= 2
√
p0q0

[
e−iφp cos

θp

2
sin
θq

2
− e−iφq cos

θq

2
sin
θp

2

]
,

(A.6)

where θp, θq and φp, φq are the polar and azimuthal angles,
respectively, of the corresponding light-like 4-momenta,

pµ = p0(1, sin θp cosφp, sin θp sinφp, cos θp) ,

qµ = q0(1, sin θq cosφq, sin θq sinφq, cos θq) . (A.7)



E. Accomando et al.: Electroweak corrections to Wγ and Zγ production at the LHC 143

The amplitudes for neutral current reactions can be
extracted from (A.3) and (A.4) by simply setting (Q2−
Q1) = 0. Inserting (A.3) and (A.4) in (A.1) and adding the
resulting expressions yields the full Born amplitude. While
this is gauge invariant, the resonant and non-resonant
parts as defined above are gauge-dependent, unless apply-
ing the LPA. To this end, one has to set the finite width in
the s-channel propagator PV (p1+p2) in the resonant am-
plitude (A.3) to zero and to insert the resulting expression
in (A.1), where the spinor and scalar products have to be
evaluated using the on-shell projected momenta, except for
in the resonant propagator PV (p3+p4). Note that we set
the gauge spinor for the external photon to g = p4 to obtain
the above results, which is why the contribution of the dia-
gram with the photon coupling to the external fermion f4
vanishes.
Dropping the superscript for resonant and non-resonant

contributions in what follows, the other helicity combina-
tions can be obtained as

B−++V (p1, p2, p3, p4, p5, Q1, Q2, Q3, Q4) =

B+++V (p2, p1, p3, p4, p5,−Q2,−Q1, Q3, Q4) ,

B+−+V (p1, p2, p3, p4, p5, Q1, Q2, Q3, Q4) =

B+++V (p1, p2, p4, p3, p5, Q1, Q2,−Q4,−Q3) ,

B−−+V (p1, p2, p3, p4, p5, Q1, Q2, Q3, Q4) =

B+++V (p2, p1, p4, p3, p5,−Q2,−Q1,−Q4,−Q3) ,
(A.8)

as well as

Bσ1σ3−V (p1, p2, p3, p4, p5, Q1, Q2, Q3, Q4) =

[
B−σ1−σ3+V (p1, p2, p3, p4, p5, Q1, Q2, Q3, Q4)

]�
∣∣∣∣∣
P�
V
→PV

.

(A.9)

A.2 The non-factorizable corrections

A general discussion for the photonic non-factorizable cor-
rections for a process involving massless external particles
and an arbitrary number of resonances can be found in [31].
Applying the general results displayed there to our pro-
cesses, the correction factor results in

δvirtnfac
(
Φosh0 , (p3+p4)

2−M2V
)
=

∑

i=1,2

∑

j=3,4

τiτjQiQj
α

π
Re
{
∆V
(
poshi ; (p3+p4), p

osh
j

)}
,

V =W,Z (A.10)

with

∆V
(
poshi ; (p3+p4), p

osh
j

)
=

2 ln

(
mγMV

M2V − iMV ΓV − (p3+p4)
2

)

×

[
ln

(
t̂

t

)
−1

]
−2−Li2

(
1−
t̂

t

)
.

(A.11)

The kinematical variables t̂ and t are defined by

t=
(
poshi −p

osh
j

)2
, t̂=

(
poshi −p

osh
3 −p

osh
4

)2
−M2V ,
(A.12)

and Li2 denotes the dilogarithm (21).

A.3 The real QED corrections

The determination of the helicity amplitudes for the real
QED corrections can be performed in the same way as
described in AppendixA.1 for the case of the Born am-
plitudes. The calculation is much more involved, though,
since the set of generic diagrams comprises here 31 instead
of five diagrams. These diagrams can be obtained from the
ones shown in Fig. 5 in the following way. A total number of
thirty diagrams is obtained by attaching the additional real
photon to each fermion line and to each massive vector-
boson line in the Born graphs shown in Fig. 5. The one
remaining diagram results from both photons coupling to
the intermediate vector boson via a V V γγ coupling. Apart
from the increased number of diagrams, one has to cal-
culate the generic amplitude for two different polarization
combinations, since a final state with both photons having
the same helicity is not related by any discrete symmetry to
a final state with two photons of opposite helicity.
Adopting the conventions of AppendixA.1, the generic

amplitude of the QED bremsstrahlung process reads

M σ1σ2σ3σ4λ5λ6
real,QED c1c2c3c4

(p1, p2, p3, p4, p5, p6) =

−4e4δc1c2δσ1−σ2δσ3−σ4
∑

V

Cσ1V q̄2q1C
σ3
V f̄3f4

×Bσ1σ3λ5λ6V γ (p1, p2, p3, p4, p5, p6, Qq1 , Qq2 , Qf3 , Qf4) ,

(A.13)

where the sum over V is again taken over all SM vector
bosons. The couplings of the gauge boson V to the fermion
fa and the antifermion f̄b is again denoted by C

σa
V f̄bfa

and

can be read off Table 5. The generic function for all helici-
ties positive is obtained as

B++++V γ (p1, p2, p3, p4, p5, p6, Q1, Q2, Q3, Q4) =

〈p4p1〉2

〈p4p5〉〈p4p6〉

{
PV (p3+p4)

[
−Q21〈p3p2〉

�〈p4p1〉

〈p1p5〉〈p1p6〉

+
Q1Q2〈p4|p2+p5|p3〉

〈p2p5〉〈p1p6〉
+
Q1Q2〈p4|p2+p6|p3〉

〈p1p5〉〈p2p6〉

+
Q22〈p1p3〉

�〈p2p4〉

〈p2p5〉〈p2p6〉

]
+PV (p3+p4+p5)

×

[
Q3

〈p3p5〉
+PV (p3+p4)(Q2−Q1)〈p5p3〉

�

]

×

[
Q1〈p4|p1+p6|p2〉

〈p1p6〉
+
Q2〈p4|p2+p6|p1〉

〈p2p6〉

−PV (p1+p2)(Q2−Q1)〈p1p2〉
�〈p4|p2+p1|p6〉

]
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+PV (p3+p4+p6)

×

[
Q3

〈p3p6〉
+PV (p3+p4)(Q2−Q1)〈p6p3〉

�

]

×

[
Q1〈p4|p1+p5|p2〉

〈p1p5〉
+
Q2〈p4|p2+p5|p1〉

〈p2p5〉

−PV (p1+p2)(Q2−Q1)〈p1p2〉
�〈p4|p2+p1|p5〉

]

−PV (p1+p2)
Q23

〈p3p5〉〈p3p6〉
〈p1p2〉

�〈p3p4〉

}
,

(A.14)

where in the above expressions, a product like 〈p1|p4+
p6|p5〉 is defined by

〈a|b+ c|d〉= 〈ab〉〈db〉�+ 〈ac〉〈dc〉� . (A.15)

The corresponding function for helicity λ5 negative reads

B++−+V γ (p1, p2, p3, p4, p5, p6, Q1, Q2, Q3, Q4) =

1

〈p4p6〉〈p3p5〉�

×

{
PV (p3+p4)

[
Q21

〈p1p5〉�〈p1p6〉

〈p3p2〉�

(p1+p5+p6)2

×

(
〈p4|p1+p5|p3〉〈p4|p1+p5|p6〉〈p1p6〉

+ 〈p1p4〉〈p1p5〉
�〈p1p5〉〈p2p4〉〈p3p2〉

�

)

+
Q22

〈p2p5〉�〈p2p6〉

〈p4p1〉

(p2+p5+p6)2

×

(
〈p5|p2+p6|p3〉〈p4|p2+p6|p3〉〈p2p5〉

�

+ 〈p1p3〉
�〈p2p6〉

�〈p2p6〉〈p2p3〉
�〈p4p1〉

)

+
Q1Q2

〈p2p5〉�〈p1p6〉
〈p4p1〉

2 (〈p2p3〉
�)2

−
Q1Q2

〈p1p5〉�〈p2p6〉
〈p4|p1+p5|p3〉

2

]

+PV (p3+p4+p5)〈p1|p4+p5|p3〉

×

[
Q4

〈p4p5〉�
−PV (p3+p4)(Q2−Q1)〈p5p4〉

]

×

[
Q1

〈p1p6〉
〈p4p1〉〈p3p2〉

�−
Q2

〈p2p6〉
〈p4|p2+p6|p3〉

+PV (p1+p2)(Q2−Q1)

(
〈p6p2〉

�〈p6p3〉
�〈p6p4〉

+ 〈p4|p2+p1|p6〉〈p3p2〉
�

)]

+PV (p3+p4+p6)〈p4|p3+p6|p2〉

×

[
Q3

〈p3p6〉
+PV (p3+p4)(Q2−Q1)〈p6p3〉

�

]

×

[
Q1

〈p1p5〉�
〈p4|p2+p6|p3〉+

Q2

〈p2p5〉�
〈p4p1〉〈p3p2〉

�

−PV (p1+p2)(Q2−Q1)

(
〈p5p1〉〈p5p4〉〈p5p3〉

�

+ 〈p5|p2+p1|p3〉〈p4p1〉

)]

+PV (p1+p2)

[
PV (p3+p4)(Q2−Q1)

2

×〈p1p4〉〈p2p3〉
�〈p4p5〉〈p6p3〉

�

+
Q23
〈p3p6〉

〈p6p4〉〈p3p6〉�〈p4p1〉

(p3+p5+p6)2
〈p5|p3+p6|p2〉

+
Q3Q4

〈p3p6〉〈p4p5〉�
〈p1|p4+p5|p3〉〈p4|p3+p6|p2〉

−
Q24
〈p4p5〉�

〈p5p3〉�〈p3p2〉�〈p5p4〉

(p4+p5+p6)2
〈p1|p4+p5|p6〉

]}
.

(A.16)

The other helicity combinations can be calculated by

B−+λ5+V γ (p1, p2, p3, p4, p5, p6, Q1, Q2, Q3, Q4) =

B++λ5+V γ (p2, p1, p3, p4, p5, p6,−Q2,−Q1, Q3, Q4) ,

B+−λ5+V γ (p1, p2, p3, p4, p5, p6, Q1, Q2, Q3, Q4) =

B++λ5+V γ (p1, p2, p4, p3, p5, p6, Q1, Q2,−Q4,−Q3) ,

B−−λ5+V γ (p1, p2, p3, p4, p5, p6, Q1, Q2, Q3, Q4) =

B++λ5+V γ (p2, p1, p4, p3, p5, p6,−Q2,−Q1,−Q4,−Q3) ,
(A.17)

and

Bσ1σ3λ5−V γ (p1, p2, p3, p4, p5, p6, Q1, Q2, Q3, Q4) =[
B−σ1−σ3−λ5+V γ

(p1, p2, p3, p4, p5, p6, Q1, Q2, Q3, Q4)
]�
∣∣∣∣∣
P�
V
→PV

.

(A.18)

Appendix B: Explicit form
of the (Lorentz-invariant)
on-shell projection

In order to be able to evaluate the virtual corrections to
the processes (3) in LPA, an on-shell projection has to be
specified which maps a general set of momenta Φ0 on a set
of momenta Φosh0 such that (posh3 +p

osh
4 )

2 =M2V , whereMV
is the mass of the decaying vector boson V =W,Z. Such
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a projection is given by

p̃3 = y1p3 , p̃5 = y2p5 , p̃4 = p1+p2− p̃3− p̃5 ,
(B.1)

where scaling variables y1 and y2 are obtained from the
mass-shell conditions for the resonance and for the momen-
tum p̃4 as

y2 =
ŝ−M2V
2(p1+p2)p5

, y1 =
M2V

2(p1+p2− zp5)p3
. (B.2)

This on-shell projection only involves Lorentz-invariant
quantities.
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34. S. Dittmaier, M. Krämer, Phys. Rev. D 65, 073007 (2002)
[hep-ph/0109062]

35. A. Martin et al., Eur. Phys. J. C 39, 155 (2005) [hep-

ph/0411040]
36. H. Spiesberger, Phys. Rev. D 52, 4936 (1995) [hep-
ph/9412286]

37. M. Roth, S. Weinzierl, Phys. Lett. B 590, 190 (2004) [hep-
ph/0403200]

38. S. Dittmaier, Nucl. Phys. B 565, 69 (2000) [hep-
ph/9904440]

39. S. Catani, M. Seymour, Phys. Lett. B 378, 287 (1996) [hep-
ph/9602277]

40. S. Catani, M. Seymour, Nucl. Phys. B 485, 291 (1997)

[hep-ph/9605323]
41. S. Catani, M. Seymour, Nucl. Phys. B 510, 503 (1997)
[hep-ph/9605323], Erratum

42. R. Stuart, Phys. Lett. B 262, 113 (1991)

43. A. Aeppli, G. van Oldenborgh, D. Wyler, Nucl. Phys. B
428, 126 (1994) [hep-ph/9312212]

44. A. Aeppli, F. Cuypers, G. van Oldenborgh, Phys. Lett. B
314, 413 (1993) [hep-ph/9303236]

45. U. Baur, D. Zeppenfeld, Phys. Rev. Lett. 75, 1002 (1995)
[hep-ph/9503344]

46. W. Beenakker et al., Nucl. Phys. B 500, 255 (1997) [hep-

ph/9612260]
47. W. Beenakker, F. Berends, A. Chapovsky, Nucl. Phys. B
548, 3 (1999) [hep-ph/9811481]

48. A. Denner et al., Nucl. Phys. B 560, 33 (1999) [hep-

ph/9904472]
49. G. Passarino, Nucl. Phys. B 574, 451 (2000)
[hep-ph/9911482]

50. E. Accomando, A. Ballestrero, E. Maina, Phys. Lett. B
479, 209 (2000) [hep-ph/9911489]

51. W. Beenakker, F. Berends, A.P. Chapovsky, Nucl. Phys. B
573, 503 (2000) [hep-ph/9909472]

52. W. Beenakker et al., Nucl. Phys. B 667, 359 (2003) [hep-
ph/0303105]

53. M. Beneke et al., Nucl. Phys. B 686, 205 (2004) [hep-

ph/0401002]



146 E. Accomando et al.: Electroweak corrections to Wγ and Zγ production at the LHC

54. M. Beneke et al., Phys. Rev. Lett. 93, 011602 (2004) [hep-
ph/0312331]

55. M. Roth, Precise predictions for four-fermion production
in electron positron annihilation, PhD thesis, ETH Zürich
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